Review

-Regression, χ^{2}, ANOVA
-What Test or Confidence Interval?
-Top Ten Mistakes
-Thoughts on Probability

Regression, χ^{2}, ANOVA

- Regression: Two quantitative variables, interested in predicting y given x or see how y changes as x changes.
- Goodness of Fit: Given a frequency table, does it fit a known distribution?
- Test for Independence: Are two Categories Independent or Dependent?
- Test for Homogeneity: Two frequency tables given. Do they have the same distribution?
- 1-Way-ANOVA: Are all (more than 2) means the same? More than 2 quantitative variables.
- Test for 2 Variances: Are the Stand. Dev. Equal?

What Test or Confidence Interval?

Estimate or Decision	Mean or Proportion	Sigma Known or Unknown	1 or 2 Samples	Dependent or Independent	Conclusion
Estimate	Mean	Known	1	NA	ZInterval
Estimate	Mean	Unknown	1	NA	TInterval
Estimate	Prop	NA	1	NA	1PropZInt
Estimate	Mean	Known	2	Independ.	2SampZInt
Estimate	Mean	Unknown	2	Independ.	2SampTInt
Estimate	Mean	Known	2	Depend.	ZInt (L1-L2)
Estimate	Mean	Unknown	2	Depend.	Tint (L1-L2)
Estimate	Prop	NA	2	NA	2PropZInt

What Test?

Estimate or Decision	Mean or Proportion	Sigma Known or Unknown	or 2 Samples	Dependent or Independent	Conclusion
Decision	Mean	Known	1	NA	ZTest
Decision	Mean	Unknown	1	NA	TTest
Decision	Prop	NA	1	NA	1PropZTest
Decision	Mean	Known	2	Independ.	2SampZTest
Decision	Mean	Unknown	2	Independ.	2SampTTest
Decision	Mean	Known	2	Depend.	ZTest (L1-L2)
Decision	Mean	Unknown	2	Depend.	TTest (L1-L2)
Decision	Prop	NA	2	NA	2PropZTest

Top 10 Mistakes

1. Say $n>30$ for a proportion.
2. Say $n p, n q>5$ for a mean.
3. Use definitive language for regression.
4. \quad Say $n>30$ to justify Z instead of T.
5. Confuse the three χ^{2} tests.
6. Accepting H_{0} in the conclusion statement.
7. Refer to the sample instead of the population when interpreting the CI or Hyp test.
8. Forgetting to subtract $P(A$ and $B)$ when finding $\mathrm{P}(A$ or $B)$.
9. Trying to multiply probabilities when reading from a table.
10. Forgetting to divide by the square root of n when finding a probability involving means.

Thoughts on Probability

General Probability

$P(A)=\frac{\# A}{\# S}$
$P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
A and B independent:
$P(A$ and $B)=P(A) P(B)$
$P(A \mid B)=P(A)$

Tables Row A, Column B
$P(A$ and $B)=\frac{A B \text { cell }}{\text { Grand Total }}$

$$
P(A)=\frac{\text { Row } A \text { Total }}{\text { Grand Total }}
$$

$$
P(B)=\frac{\text { Column } B \text { Total }}{\text { Grand Total }}
$$

$$
P(A \mid B)=\frac{A B \text { Cell }}{\text { Column } B \text { Total }}
$$

