

Preview
 Characteristics of Data

1. Center: A representative value that indicates where the middle of the data set is located.
2. Variation: A measure of the amount that the data values vary.
3. Distribution: The nature or shape of the spread of data over the range of values (such as bell-shaped, uniform, or skewed).
4. Outliers: Sample values that lie very far away from the vast majority of other sample values.
5. Time: Changing characteristics of the data over time.

2-1 Review and Preview
2-2 Frequency Distributions
2-3 Histograms
2-4 Graphs that Enlighten and Graphs that Deceive

Summarizing and Graphing Data

2-2 Frequency Distributions
2-3 Histograms
2-4 Graphs that Enlighten and Graphs that Deceive

Chapter 2

 Summarizing and Graphing Data2-1 Review and Preview

Definition

* Frequency Distribution (or Frequency Table)
shows how a data set is partitioned among all of several categories (or classes) by listing all of the categories along with the number (frequency) of data values in each of them. generate frequency distributions, the details of constructing them are not as important as what they tell us about data sets.

2

IQ Scores of Low Lead Group

Reasons for Constructing Frequency Distributions

1. Large data sets can be summarized.
2. We can analyze the nature of data.
3. We have a basis for constructing important graphs.

Constructing A Frequency Distribution

1. Determine the number of classes (should be between 5 and 20).
2. Calculate the class width (round up).

$$
\text { class width } \approx \frac{(\text { maximum value })-(\text { minimum value })}{\text { number of classes }}
$$

3. Starting point: Choose the minimum data value or a convenient value below it as the first lower class limit.
4. Using the first lower class limit and class width, proceed to list the other lower class limits.
5. List the lower class limits in a vertical column and proceed to enter the upper class limits.
6. Take each individual data value and put a tally mark in the appropriate class. Add the tally marks to get the frequency always Learning Copyright © 2015, 2011, 2008 Pearson Education, Inc. PEARSON Section 2.1-13

Relative Frequency Distribution

IQ Score	Frequency	Relative Frequency
$50-69$	2	2.6%
$70-89$	33	42.3%
$90-109$	35	44.9%
$110-129$	7	9.0%
$130-149$	1	1.3%

Cumulative Frequency Distribution

IQ Score	Frequency	Cumulative Frequency
$50-69$	2	2
$70-89$	33	35
$90-109$	35	70
$110-129$	7	77
$130-149$	1	78

Critical Thinking: Using Frequency Distributions to Understand Data

> In later chapters, there will be frequent reference to data with a normal distribution. One key characteristic of a normal distribution is that it has a "bell" shape.
> The frequencies start low, then increase to one or two high frequencies, and then decrease to a low frequency.
> The distribution is approximately symmetric, with frequencies preceding the maximum being roughly a mirror image of those that follow the maximum.

Gaps

Gaps

The presence of gaps can show that we have data from two or more different populations.

However, the converse is not true, because data from different populations do not necessarily result in gaps.

Example

* The table on the next slide is a frequency distribution of randomly selected pennies.
* The weights of pennies (grams) are presented, and examination of the frequencies suggests we have two different populations.
- Pennies made before 1983 are 95% copper and 5% zinc.
* Pennies made after 1983 are 2.5% copper and 97.5% zinc.

Chapter 2

Summarizing and Graphing Data

2-1 Review and Preview
2-2 Frequency Distributions
2-3 Histograms
2-4 Graphs that Enlighten and Graphs that Deceive

Example (continued)

Weight (grams) of Penny	Frequency
$2.40-2.49$	18
$2.50-2.59$	19
$2.60-2.69$	0
$2.70-2.79$	0
$2.80-2.89$	0
$2.90-2.99$	2
$3.00-3.09$	25
$3.10-3.19$	8

Example

IQ scores from children with low levels of lead.

The heights of the bars correspond to the frequency values.

Histogram
A histogram is basically a graph of a frequency
distribution.
Histograms can usually be generated using
technology.

Critical Thinking Interpreting Histograms

Objective is not simply to construct a histogram, but rather to understand something about the data.

When graphed, a normal distribution has a "bell" shape. Characteristic of the bell shape are
(1) The frequencies increase to a maximum, and then decrease, and
(2) symmetry, with the left half of the graph roughly a mirror image of the right half.

The histogram on the next slide illustrates this

Example - Discuss the Shape

Assessing Normality with a Normal Quantile Plot

- Many methods we will use later in the text require that the sample data must be from a population with a normal distribution.
- A normal quantile plot can be interpreted on the following criteria:
- Normal Distribution: Points are reasonably close to a straight line
- Not a Normal Distribution: Points not reasonably close to a straight line or the points show some systemic pattern that is not straight

Chapter 2

Summarizing and Graphing Data

2-1 Review and Preview
2-2 Frequency Distributions
2-3 Histograms
2-4 Graphs that Enlighten and Graphs that Deceive

Key Concept

This section discusses other types of statistical graphs.

Our objective is to identify a suitable graph for representing the data set. The graph should be effective in revealing the important characteristics of the data.

Key Concept

Some graphs are bad in the sense that they contain errors.

Some are bad because they are technically correct, but misleading.

It is important to develop the ability to recognize bad graphs and identify exactly how they are misleading.

s

Stemplot (or Stem-and-Leaf Plot)

represents quantitative data by separating each value into two parts: the stem (such as the leftmost digit) and the leaf (such as the rightmost digit).

```
    0234566666778
    \00045555566677888999
    l}\begin{array}{l}{123444566666677}\\{01245567778}
    |
    $2
```


Bar Graph

Uses bars of equal width to show frequencies of categorical, or qualitative, data. Vertical scale represents frequencies or relative frequencies. Horizontal scale identifies the different categories of qualitative data.

A multiple bar graph has two or more sets of bars and is used to compare two or more data sets.

Pareto Chart

A bar graph for qualitative data, with the bars arranged in descending order according to frequencies

Relative Frequency Polygon

Uses relative frequencies (proportions or percentages) for the vertical scale.

Graphs That Deceive

Nonzero Axis: Graphs can be misleading because one or both of the axes begin at some value other than zero, so that differences are exaggerated.

Drawings of objects. Three-dimensional objects - money bags, stacks of coins, army tanks (for army expenditures), people (for population sizes), barrels (for oil production), and houses (for home construction) are commonly used to depict data.
These drawings can create false impressions that distort the data.
If you double each side of a square, the area does not merely double; it increases by a factor of four; if you double each side of a cube, the volume does not merely double; it increases by a factor of eight.
Pictographs using areas and volumes can therefore be very misleading.

Pictographs

Frequency Polygon

uses line segments connected to points directly above class midpoint values.

always learning
PEARSON Section 2.1-44

Fair, objective, unencumbered by distracting features.

ALways LeARNING	Copyright © 2015, 2011, 2008 Pearson Education, Inc.	PEARSON Section 2.1-51

Important Principles Suggested by Edward Tufte

For small data sets of 20 values or fewer, use a table instead of a graph.
$\boldsymbol{9}$
A graph of data should make the viewer focus on the true nature of the data, not on other elements, such as eye-catching but distracting design features.

Do not distort data. Construct a graph to reveal the true nature of the data.

Almost all of the ink in a graph should be used for the data, not for the other design elements.

