

Review

In Chapter 9 we presented methods for making inferences from two samples.

In Section 9-4 we considered two dependent samples, with each value of one sample somehow paired with a value from the other sample, and we illustrated the use of hypothesis tests for claims about the population of differences.

We also illustrated the construction of confidence-interval estimates of the mean of all such differences.

In this chapter we again consider paired sample data, but the objective is fundamentally different from that of Section 9-4.
always learning

Preview

In this chapter we introduce methods for determining whether a correlation, or association, between two variables exists and whether the correlation is linear.

For linear correlations, we can identify an equation that best fits the data and we can use that equation to predict the value of one variable given the value of the other variable.

In addition, we consider methods for identifying linear equations for correlations among two variables.

Key Concept

Part 1 of this section introduces the linear correlation coefficient, r, which is a number that measures how well paired sample data fit a straight-line pattern when graphed.
Using paired sample data (sometimes called bivariate data), we find the value of r (usually using technology), then we use that value to conclude that there is (or is not) a linear correlation between the two variables.

Definition
A correlation exists between two variables when the
values of one are somehow associated with the values
of the other in some way.
A linear correlation exists between two variables when
there is a correlation and the plotted points of paired
data result in a pattern that can be approximated by a
straight line.
ALwars Lesanning
PEARSON section 10.2.9.

(c) No correlation: $r=0$

(d) Nonlinear relationship: $r=-0.087$

Requirements for Linear Correlation

1. The sample of paired (x, y) data is a simple random sample of quantitative data.
2. Visual examination of the scatterplot must confirm that the points approximate a straight-line pattern.
3. The outliers must be removed if they are known to be errors. The effects of any other outliers should be considered by calculating r with and without the outliers included.

Interpreting r

Using Table A-6: If the absolute value of the computed value of r, exceeds the value in Table A-6, conclude that there is a linear correlation. Otherwise, there is not sufficient evidence to support the conclusion of a linear correlation.
Using Software: If the computed P-value is less than or equal to the significance level, conclude that there is a linear correlation. Otherwise, there is not sufficient evidence to support the conclusion of a linear correlation.

Properties of the Linear Correlation Coefficient r

Know that the methods of this section apply to a linear correlation.

If you conclude that there does not appear to be linear correlation, know that it is possible that there might be some other association that is not linear.

Caution

$n \quad$ number of pairs of sample data
\sum denotes the addition of the items indicated
$\sum x$ sum of all x-values
$\sum x^{2}$ indicates that each x-value should be squared and then those squares added
$\left(\sum x\right)^{2}$ indicates that each x-value should be added and the total then squared
$\sum x y$ indicates each x-value is multiplied by its corresponding y-value. Then sum those up.
$r \quad$ linear correlation coefficient for sample data
$\rho \quad$ linear correlation coefficient for a population of paired data

Notation for the Linear Correlation Coefficient

1. $-1 \leq r \leq 1$
2. If all values of either variable are converted to a different scale, the value of r does not change.
3. The value of r is not affected by the choice of x and y.
Caution
Know that the methods of this section apply to a linear
correlation.
If you conclude that there does not appear to be linear
correlation, know that it is possible that there might be
some other association that is not linear.
AIwars
PEARARNSN Interchange all x - and y-values and the value of r will not change.
4. r measures strength of a linear relationship.
5. r is very sensitive to outliers, which can dramatically affect the value of r.

Example - Continued

A few technologies are displayed below, used to calculate the value of r.

Using the Formulas to Calculate Correlation

Technology is highly recommended, and as such, we refer you to the textbook, pages 501 and 502 for the manual calculations using the formulas.

alwars learning

Example - Continued

Requirement Check: The data are a simple random sample of quantitative data, the plotted points appear to roughly approximate a straight-line pattern, and there are no outliers.

Interpreting the Linear Correlation Coefficient r

Using computer software:
If the P-value is less than the level of significance, conclude there is a linear correlation.

Our example with technologies provided a P-value of 0.294 .

Because that P-value is not less than the significance level of 0.05 , we conclude there is not sufficient evidence to support the conclusion that there is a linear correlation between shoe print length and heights of people.

Interpreting r : Explained Variation

The value of r^{2} is the proportion of the variation in y that is explained by the linear relationship between x and y.

Common Errors Involving Correlation

1. Causation: It is wrong to conclude that correlation implies causality.
2. Averages: Averages suppress individual variation and may inflate the correlation coefficient.
3. Linearity: There may be some relationship between x and y even when there is no linear correlation.

Part 2: Formal Hypothesis Test

Know that correlation does not imply causality.

Formal Hypothesis Test

We wish to determine whether there is a significant linear correlation between two variables.

Notation:
$n=$ number of pairs of sample data
$r=$ linear correlation coefficient for a sample of paired data
$\rho=$ linear correlation coefficient for a population of paired data
always Learning

Hypothesis Test for Correlation

 Hypotheses$H_{0}: \rho=0 \quad$ (There is no linear correlation.)
$H_{1}: \rho \neq 0 \quad$ (There is a linear correlation.)
Test Statistic: r
Critical Values: Refer to Table A-6.
P-values: Refer to technology.

Hypothesis Test for Correlation

If $|r|>$ critical value from Table A-6, reject the null hypothesis and conclude that there is sufficient evidence to support the claim of a linear correlation.

If $|r| \leq$ critical value from Table A-6, fail to reject the null hypothesis and conclude that there is not sufficient evidence to support the claim of a linear correlation.

Example - Continued

We test the claim:

$$
\begin{array}{ll}
H_{0}: \rho=0 & \text { (There is no linear correlation) } \\
H_{1}: \rho \neq 0 & \text { (There is a linear correlation) }
\end{array}
$$

With the test statistic $r=0.591$ from the earlier example. The critical values of $r= \pm 0.878$ are found in Table A-6 with $n=5$ and $\alpha=0.05$.

We fail to reject the null and conclude there is not sufficient evidence to support the claim of a linear correlation.

P-Value Method for a Hypothesis Test for Linear Correlation

The test statistic is below, use $n-2$ degrees of freedom.

$$
t=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}
$$

P-values can be found using software or Table A-3.

Example - Continued

Because the P-value of 0.2937 is greater than the significance level of 0.05 , we fail to reject the null hypothesis.

We conclude there is not sufficient evidence to support the claim of a linear correlation between shoe print length and heights.

One-Tailed Tests

One-tailed tests can occur with a claim of a positive linear correlation or a claim of a negative linear correlation. In such cases, the hypotheses will be as shown here.
Claim of Negative Correlation Claim of Positive Correlation

(Left-tailed test)	(Right-tailed test)
$H_{0}: \rho=0$	$H_{0}: \rho=0$
$H_{1}: \rho<0$	$H_{1}: \rho>0$

For these one-tailed tests, the P-value method can be used as in earlier chapters.
always learning

PEARSON

Key Concept

In Part 1 of this section we find the equation of the straight line that best fits the paired sample data. That equation algebraically describes the relationship between two variables.

The best-fitting straight line is called a regression line and its equation is called the regression equation.

In Part 2, we discuss marginal change, influential points, and residual plots as tools for analyzing correlation and regression results.

Part 1: Basic Concepts of Regression

Definitions

Regression Equation:

Given a collection of paired sample data, the regression line (or line of best fit, or least-squares line) is the straight line that "best" fits the scatterplot of data.

The regression equation $\hat{y}=b_{0}+b_{1} x$ algebraically describes the regression line.

Notation for Regression Equation

	Population Parameter	Sample Statistic
y-Intercept of regression equation	β_{0}	b_{0}
Slope of regression equation	β_{1}	b_{1}
Equation of the regression line	$y=\beta_{0+} \beta_{1} x$	$\hat{y}=b_{0}+b_{1} x$

Formulas for b_{1} and b_{0}

Slope: $\quad b_{1}=r \frac{s_{y}}{s_{x}}$
y-intercept: $\quad b_{0}=\bar{y}-b_{1} \bar{x}$

Technology will compute these values.

Example

Let us return to the example from Section 10.2. We would like to use the explanatory variable, x, shoe print length, to predict the response variable, y, height.

The data are listed below:

Table 10-1					
Shoe Print Lengths and Heights of Males					
Shoe Print (cm)	29.7	29.7	31.4	31.8	27.6
Height (cm)	175.3	177.8	185.4	175.3	172.7

Example - Continued

Example

Recall from the previous section that $r=0.591269$.
Technology can be used to find the values of the sample means and sample standard deviations used below.

$$
\begin{aligned}
& b_{1}=r \frac{s_{y}}{s_{x}}=0.591269 \frac{4.87391}{1.66823}=1.72745 \\
& b_{0}=y-b_{1} x=177.3-(1.72745)(30.04)=125.40740
\end{aligned}
$$

(These are the same coefficients found using technology)

Example - Continued

Requirement Check:

1. The data are assumed to be a simple random sample.
2. The scatterplot showed a roughly straight-line pattern.
3. There are no outliers.

The use of technology is recommended for finding the equation of a regression line.

Example - Continued

All these technologies show that the regression equation can be expressed as:

$$
\hat{y}=125+1.73 x
$$

Now we use the formulas to determine the regression equation (technology is recommended).
always learning

PEARSON

Example

Graph the regression equation on a scatterplot:

$$
\hat{y}=125+1.73 x
$$

Using the Regression Equation for Predictions

1. Use the regression equation for predictions only if the graph of the regression line on the scatterplot confirms that the regression line fits the points reasonably well.
2. Use the regression equation for predictions only if the linear correlation coefficient r indicates that there is a linear correlation between the two variables (as described in Section 10-2).

Strategy for Predicting Values of \boldsymbol{y}
Strategy for Predicting Values of Y

Using the Regression Equation for Predictions

3. Use the regression line for predictions only if the data do not go much beyond the scope of the available sample data. (Predicting too far beyond the scope of the available sample data is called extrapolation, and it could result in bad predictions.)
4. If the regression equation does not appear to be useful for making predictions, the best predicted value of a variable is its sample mean.

Using the Regression Equation for Predictions

If the regression equation is not a good model, the best predicted value of y is simply \bar{y}, the mean of the y values.
Remember, this strategy applies to linear patterns of points in a scatterplot.

If the scatterplot shows a pattern that is not a straight-line pattern, other methods apply, as described in Section 106.

Example

Use the 5 pairs of shoe print lengths and heights to predict the height of a person with a shoe print length of 29 cm .

The regression line does not fit the points well. The correlation is $r=0.591$, which suggests there is not a linear correlation (the P-value was 0.294).

The best predicted height is simply the mean of the sample heights:

$$
\bar{y}=177.3 \mathrm{~cm}
$$

Example

Use the 40 pairs of shoe print lengths from Data Set 2 in Appendix B to predict the height of a person with a shoe print length of 29 cm .

Now, the regression line does fit the points well, and the correlation of $r=0.813$ suggests that there is a linear correlation (the P-value is 0.000).

Part 2: Beyond the Basics of Regression

Definition

In working with two variables related by a regression equation, the marginal change in a variable is the amount that it changes when the other variable changes by exactly one unit.
The slope b_{1} in the regression equation represents the marginal change in y that occurs when x changes by one unit.

A person with a shoe length of 29 cm is predicted to be 174.3 cm tall.

The given shoe length of 29 cm is not beyond the scope of the available data, so substitute in 29 cm into the regression model:

$$
\begin{aligned}
\hat{y} & =80.9+3.22 x \\
& =80.9+3.22(29) \\
& =174.3 \mathrm{~cm}
\end{aligned}
$$

Definition

In a scatterplot, an outlier is a point lying far away from the other data points.

Paired sample data may include one or more influential points, which are points that strongly affect the graph of the regression line.
The slope of 3.22 tells us that if we increase shoe print length by 1 cm , the predicted height of a person increases by 3.22 cm .

Definition

For a pair of sample x and y values, the residual is the difference between the observed sample value of y and the y-value that is predicted by using the regression equation.

That is:
residual $=$ observed $y-$ predicted $y=y-\hat{y}$

Example - Continued

The additional point is an influential point because the graph of the regression line because the graph of the regression line did change considerably.

The additional point is also an outlier because it is far from the other points.

Definition

A residual plot is a scatterplot of the (x, y) values after each of the y-coordinate values has been replaced by the residual value $y-\hat{y}$ (where \hat{y} denotes the predicted value of y).
That is, a residual plot is a graph of the points $(x, y-\hat{y})$.

Residual Plot Analysis

When analyzing a residual plot, look for a pattern in the way the points are configured, and use these criteria:

The residual plot should not have any obvious patterns (not even a straight line pattern). This confirms that the scatterplot of the sample data is a straight-line pattern.

The residual plot should not become thicker (or thinner) when viewed from left to right. This confirms the requirement that for different fixed values of x, the distributions of the corresponding y values all have the same standard deviation.

always learning

PEARSON

Example - Continued

The residual plot becomes thicker, which suggests that the requirement of equal standard deviations is violated

Example - Continued

On the following slides are three residual plots.

Observe what is good or bad about the individual regression models.
The shoe print and height data are used to generate the following residual plot: minitab

regression models

Example - Continued

Distinct pattern: sample data may not follow a straightline pattern.

Residual Plot with an
Obvious Pattern, Suggesting That
the Regression Equation Is Not a
Good Model

Complete Regression Analysis

3. Use a histogram and/or normal quantile plot to confirm that the values of the residuals have a distribution that is approximately normal.
4. Consider any effects of a pattern over time.

Complete Regression Analysis

1. Construct a scatterplot and verify that the pattern of the points is approximately a straight-line pattern without outliers. (If there are outliers, consider their effects by comparing results that include the outliers to results that exclude the outliers.)
2. Construct a residual plot and verify that there is no pattern (other than a straight-line pattern) and also verify that the residual plot does not become thicker (or thinner).
