	udent: _ nte:						tructor urse: M)19 A					omework 3 0 pts) Due	- Chapter 3 (e 9/3/19	
1.	Find the	(a) m	ean, (b)) median	, (c) m	ode, a	and (d)	midrang	e for th	e given	sample	data.					
	Listed b	elow a	re the p	ohenotyp	e code	es wh	rmine whether a deficiency of carbon dioxide in the soil affects the phenotype of peas where 1 = smooth-yellow, 2 = smooth-green, 3 = wrinkled-yellow, and we sense?										
	4	2	1	1	2	2	2	4	1	2	2 4	2	2	3	1		
				ype code t tenth as		ed.)		•									
	(b) The	media	n pheno	otype co	de is												
	(Type a	n integ	er or a	decimal.)												
	(c) Sele	ct the	correct	choice b	elow a	nd fill	in any a	answer	boxes v	vithin yo	our choic	e.					
				enotype o			rs as ne	eded.)									
	O B.	There	is no m	ode.													
	(d) The midrange of the phenotype codes is (Type an integer or a decimal.)																
	Do the r	neasu	res of c	enter ma	ake ser	nse?											
	○ B.○ C.	All the Only th	measu ne meai	e makes res of ce n, media n, media	nter m n, and	ake s midra	ense sii ange ma	nce the ake sens	data is se since	the da	ta is non						
2.	custome	ers wai	t in indi	•	nes at t	hree	differen	t teller v				-	-		nd a bank and mediar	where n for each of	
	Sin	igle Li	ne	6	.4	6.5	6.7	6.8	7.0	7.3	7.6	7.7	7.7	7	7.7		
		_	l Lines			5.3	6.0	6.3	6.6	7.7	7.7	8.6	9.1	l	10.0		
	The mean waiting time for customers in a single line is minutes.																
	The median waiting time for customers in a single line is minutes.																
	The mean waiting time for customers in individual lines is minutes.																
	The median waiting time for customers in individual lines is minutes.																
	Determine whether there is a difference between the two data sets that is not apparent from a comparison of the measures of center. If so, what is it?																
						_									s in individu		
				custome fference						e varied	ı ırıan th	e umes	TOF CUS	siom	ers in a sir	igie iinė.	
	\cup	111616	เอ เเบ นโ	1100	DEIME	cu ult	S LWO US	แล วษเรี.									

3.	Find the mean of the data summarized in the given frequency distribution. Compare the computed mean to the actual mean of 56.5 degrees.														
	Low Temperature (o F) 40 - 44	5 – 59	60 - 64												
	Frequency 2 7 10	7	3												
	The mean of the frequency distribution is degrees.														
	(Round to the nearest tenth as needed.)	(Round to the nearest tenth as needed.)													
	Which of the following best describes the relationship between	Which of the following best describes the relationship between the computed mean and the actual mean?													
	 A. The computed mean is close to the actual mean beca 	use the o	difference between the means is less than 5% of the ac												
	 B. The computed mean is close to the actual mean beca 	use the o	difference between the means is more than 5% of the $\boldsymbol{\epsilon}$												
	Oc. The computed mean is not close to the actual mean b	ecause t	the difference between the means is more than 5% of t												
	OD. The computed mean is not close to the actual mean b	ecause t	the difference between the means is less than 5% of th												
4.	Identify the symbols used for each of the following: (a) sample sample variance; (d) population variance.	Identify the symbols used for each of the following: (a) sample standard deviation; (b) population standard deviation; (c) sample variance; (d) population variance.													
	a. The symbol for sample standard deviation is (1)	·													
	b. The symbol for population standard deviation is (2)		<u> </u>												
	c. The symbol for sample variance is (3)														
	d. The symbol for population variance is (4)														
	(1) (2) (2) (3) (4) (4)														
	(1) \bigcirc s (2) \bigcirc s (3) \bigcirc s (4) \bigcirc s \bigcirc s ² \bigcirc s ²														
	О														
	$\bigcirc \sigma^2 \qquad \bigcirc \sigma^2 \qquad \bigcirc \sigma^2 \qquad \bigcirc \sigma^2$														
5.	Listed below are the top 10 annual salaries (in millions of dollars) of TV personalities. Find the range, variance, and standard deviation for the sample data. Given that these are the top 10 salaries, do we know anything about the variation of salaries of TV personalities in general?														
	41 39 37 29 18 14 12 10 9.7 8.9														
	The range of the sample data is \$ million. (Type an integer or a decimal.)														
	The variance of the sample data is (Round to	o two de	ecimal places as needed.)												
	The standard deviation of the sample data is \$ million.														
	(Round to two decimal places as needed.)														
	Is the standard deviation of the sample a good estimate of the variation of salaries of TV personalities in general?														
	A. Yes, because the sample is random.														
	OB. No, because the sample is not representative of the w	B. No, because the sample is not representative of the whole population.													
	○ C. Yes, because the standard deviation is an unbiased estimator.														
	D. No, because there is an outlier in the sample data.														

6.	The blood platelet counts of a group of women have a bell-shaped distribution with a mean of 259.9 and a standard deviation of 64.5. (All units are 1000 cells/μL.) Using the empirical rule, find each approximate percentage below. a. What is the approximate percentage of women with platelet counts within 2 standard deviations of the mean, or between 130.9 and 388.9?												
	b. What is the approximate percentage of women with platelet counts between 195.4 and 324.4?												
-	a. Approximately% of women in this group have platelet counts within 2 standard deviations of the mea												
	between 130.9 and 388.9. (Type an integer or a decimal. Do not round.)												
	b. Approximately% of women in this group have platelet counts between 195.4 and 324.4.												
	(Type an integer or a decimal. Do not round.)												
7.	Fill in the blank.												
	When a data value is converted to a standardized scale representing the number of standard deviations the data value lies from the mean, we call the new value a												
	When a data value is converted to a standardized scale representing the number of standard deviations the data value I												
	from the mean, we call the new value a (1)												
	(1) omean.												
	variation.												
	orange.												
8.	Fill in the blank.												
	In modified boxplots, a data value is $a(n)$ if it is above $Q_3 + (1.5)(IQR)$ or below $Q_1 - (1.5)(IQR)$.												
	In modified boxplots, a data value is $a(n)$ if it is above $Q_3 + (1.5)(IQR)$ or below $Q_1 - (1.5)(IQR)$.												
	In modified boxplots, a data value is $a(n)$ if it is above $Q_3 + (1.5)(IQR)$ or below $Q_1 - (1.5)(IQR)$. In modified boxplots, a data value is $a(n)$ (1) if it is above $Q_3 + (1.5)(IQR)$ or below $Q_1 - (1.5)(IQR)$.												
	<u> </u>												
-	In modified boxplots, a data value is a(n) (1) if it is above $Q_3 + (1.5)(IQR)$ or below $Q_1 - (1.5)(IQR)$.												
-	In modified boxplots, a data value is $a(n)$ (1) if it is above $Q_3 + (1.5)(IQR)$ or below $Q_1 - (1.5)(IQR)$.												
-	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1) Quartile outlier												
9.	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1) Quartile Outlier Z-score												
9.	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1) Quartile Outlier Z-score whisker												
9.	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1)												
9.	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1) Quartile Outlier Z-score Whisker Which of the following is NOT a value in the 5-number summary?												
9.	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1)												
9.	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1)												
9. 10.	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1)												
_	In modified boxplots, a data value is a(n) (1) if it is above Q ₃ + (1.5)(IQR) or below Q ₁ - (1.5)(IQR). (1)												

11.	The boxplot shown below results from the heights (cm) of males listed in a data set. What do the numbers in that boxplot tell us?												
	154 173.8 193												
	165.7 183.5												
	The minimum height is cm, the first quartile Q ₁ is cm, the second quartile Q ₂ (or the												
	median) is cm, the third quartile Q ₃ is cm, and the maximum height is cm. (Type integers or decimals. Do not round.)												
12.	Researchers measured the data speeds for a particular smartphone carrier at 50 airports. The highest speed measured was 75.9 Mbps. The complete list of 50 data speeds has a mean of \bar{x} = 16.51 Mbps and a standard deviation of s = 33.87 Mbps.												
	 a. What is the difference between carrier's highest data speed and the mean of all 50 data speeds? b. How many standard deviations is that [the difference found in part (a)]? c. Convert the carrier's highest data speed to a z score. d. If we consider data speeds that convert to z scores between -2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant? 												
	a. The difference is Mbps.												
	(Type an integer or a decimal. Do not round.)												
	b. The difference is standard deviations. (Round to two decimal places as needed.)												
	c. The z score is z =												
	(Round to two decimal places as needed.)												
	d. The carrier's highest data speed is (1)												
	(1) osignificantly high.												
	significantly low.												
	onot significant.												
13.	Use z scores to compare the given values.												
	The tallest living man at one time had a height of 258 cm. The shortest living man at that time had a height of 125.8 cm. Heights of men at that time had a mean of 176.81 cm and a standard deviation of 7.49 cm. Which of these two men had the height that was more extreme?												
	Since the z score for the tallest man is z = and the z score for the shortest man is z =, the												
	(1) man had the height that was more extreme. (Round to two decimal places.)												
	(1)												

130	124	135	125	120	125	150	130	134	146	139	140	128	150	
mm Họ	J.	summar g order.	y is Type inte	gers or	, decima	ls. Do no	ot round.)		,		, a	nd		_, all
Which	boxplot	below re	presents	the da	ta?									
O A.									C) B.				
	- E				_						_			
	120	130 Blood Pr	14(essure (mm		 150					1	20 Blo	130 ood Pressur	140 re (mm Hg)	15
O C.									C) D.				
	-				_									
	120	130	14(essure (mm		 150					1	20 Blo	130	140 re (mm Hg)	15