Name Key

STATS EXAM 3 Spring 2018 Form A

**Show all work on this exam form.** Free response questions REQUIRE that you show supporting work to get full credit.

Please round your answers to <u>four digits</u> after the decimal when possible. Make sure to BOX your final answers.

All questions are worth 5 points unless noted otherwise.

- n=15
- 1. (15 points) A person read that the average number of hours an adult sleeps on Friday

  The researcher feels that dollege students do night to Saturday morning was 7.2 Hours. The researcher feels that dollege students do not sleep 7.2 hours on average. The researcher randomly selected 15 students and found that they slept an average of 7.9 hours. The standard deviation of the sample is 1.2 hours. At a significance level of 0.01, is there enough evidence to say that college students do not sleep 7.2 hours on average?  $\ll = 0.01$

$$\overline{x} = 7.9$$
  $S = 1.2$ 

State the appropriate null and alternative hypothesis.

Ha: M = 7.2

b. Calculate the test statistic. Be sure to specific if it is a z or t.

$$\frac{1}{1} = \frac{\overline{X} - M}{\frac{5}{10}} = \frac{7.9 - 7.2}{\frac{1.2}{15}} = 2.259$$

c. Calculate the corresponding p-value (or range for p-values).

DVAIN = .0403

d. Make and justify a statistical decision using a significance level of 1%.

e. Interpret your decision in the context of the problem.

There is not enough endence to conclude that college straints do not sleep 7.2 hours on average.

2. Which of the following does **not** affect the width of a confidence interval for the population mean?

A. The variability of the data. 5 or 6

 $\mathbf{P}$ . The sample size.  $\mathbf{n}$ 

The confidence level of the interval. changes

D. The sample mean. D. The sample mean.

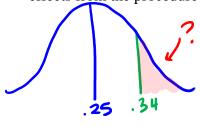
center on hy

P=.25

- 3. (10 points) A certain medical procedure produces side effects in 25% of the patients who receive it. A random sample of 130 adults who receive this procedure is selected.
  - a. Describe the distribution of the **proportion** of patients in the sample who have side effects from the medical procedure.

A. 
$$X \sim AN(32.5, 24.375)$$
 B.  $\hat{p} \sim AN(32.5, 4.9371)$ 

B. 
$$\hat{p} \sim AN(32.5, 4.9371)$$


C. 
$$\hat{p} \sim AN(0.25, 0.0014)$$

C. 
$$\hat{p} \sim AN(0.25, 0.0014)$$
 D.  $\hat{p} \sim AN(0.25, 0.0380)$ 

$$M\beta = P = .25$$

$$O\beta = P9 = (.25)(.75)$$
130

b. What is the probability that at least 34% of the sample of 130 patients have side effects from the procedure? Calculate this using the distribution selected above.



normalcof(.34, 
$$\epsilon$$
99,.25,.0380)  
=  $[.0089]$ 

# Use the following information to answer question 4-7 (13 points total)

An attorney claims that more than 25% of all lawyers advertise. To test this, we take random sample of 200 and count how many had used some form of advertising.

$$-n=200$$
  $\rho_0 = .25$ 

4. What would the null and alternative hypotheses be for our resulting hypothesis test?


5. If we find a test statistic of 2.12, which of the following is the corresponding p-value for B. 0.9830 (C.) 0.0170 D. 0.0680 E 1.9660 | look up - 2.12 our test?

A. 0.0340

- 6. When would our results be considered statistically significant?
  - A. When our p-value is greater than our significance level and we reject the null.
  - (B.) When our p-value is less than our significance level and we reject the null.
  - C. When our p-value is greater than our significance level and we fail to reject the null.
  - D. When our p-value is less than our significance level and we fail to reject the null.
- all praines in #5>.01
  FTRN 7. If  $\alpha = 0.01$ , which of the following is the correct decision?

A. There is enough evidence to support the attorney's claim.

- B.) There is not enough evidence to support the attorney's claim. C. There is enough evidence to refute the attorney's claim.
- D. There is not enough evidence to refute the attorney's claim.



- 8. Suppose an airline interested in whether the proportion of on-time flights has increased. If data is collected and a hypothesis test is run, which of the following correctly describes a Type I error? RTN | Ho true
  - A. To conclude the proportion of on-time flights has increased when it actually has.
  - B. To conclude the proportion of on-time flights has increased when it actually hasn't.
  - C. To conclude the proportion of on-time flights has not increased when it actually has.
  - D. To conclude the proportion of on-time flights has not increased when it actually hasn't.
- 9. In order to estimate the mean cost of a hotel room in the Chicago area a random sample of 55 standard hotel rooms is taken. A 96% confidence interval was calculated to be
- (\$170.77, \$197.58). A Chicago tourist site states that the average hotel cost is \$160. The confidence interval is used to test the hypotheses. Based on the confidence interval what would your decision be?
  - would your decision be?

    A Reject the null hypothesis: the null value does not fall within the confidence interval.
  - B. Fail to reject the null hypothesis: the null value does not fall within the confidence interval.
  - C. Reject the null hypothesis: the null value falls within the confidence interval.
  - D. Fail to reject the null hypothesis: the null value falls within the confidence interval.
- 10. A researcher takes 100 different samples asking if people are in favor of a border wall and creates a 95% confidence interval for each sample. How many of those 100 resulting confidence intervals would you expect to contain the true proportion of people who are in favor of a border wall?

B. 95 C. 90 D. 10 like our class example! A. 100

11. (6 points) A researcher wishes to estimate, with 90% confidence, the proportion of people who did not have a land line phone. If the researcher wishes to be accurate within 2% of the true proportion, how many people will she have to sample? no p, use .5

$$N = \frac{(Z^{+})^{2} \hat{p} \hat{q}}{(ME)^{2}} = \frac{(1.645)^{2} (.5)(.5)}{(.02)^{2}}$$

N=7

= 1691.27 =

- 12. Which of the following is a **true** statement regarding the comparison of t-distributions to the standard normal distribution?
  - The normal distribution is symmetrical whereas the t- distributions are slightly also symm
  - As the degrees of freedom increases, the t-distribution approaches the standard normal curve.
  - C. The shape of the standard normal distribution changes as the sample size increases, but the shape of the t-distribution does not change.
  - D. The total area under the t-distribution is larger than the total area under the standard normal distribution
- 13. A study was conducted to estimate the true proportion of Chuck Norris' round-house kicks that hit their intended target. A 95% confidence interval for the true proportion of Chuck Norris' kicks that land on their target was calculated to be (0.7788, 0.8212). What is the point estimate for the proportion of round-house kicks by Chuck Norris that hit their intended target?

ad target?
$$\hat{p} = \frac{8212 + .7788}{2} = 0.8$$

$$\hat{p} = \frac{9212}{2} \cdot \frac{9712}{2} \cdot \frac{9$$

# Use the following information to answer questions 14 & 15

Diet Guide magazine claims that juice fasting for a week is an excellent way to lose weight. A sample of 20 individuals has a mean weight loss of 10.3 pounds, with a standard deviation of 4.8 pounds. It is known that weight loss follows a normal distribution.

df=20-1=19 n=20ヌ = 10.3 S = 4.8

14. (6 points) Create a 95% confidence interval for the true mean weight loss from juice fasting for a week.

$$\begin{array}{ll}
X = 10.3 \\
S_{x} = 4.8 \\
N = 20 \\
C-Land = .95
\end{array}$$

$$X \pm \left(\frac{S}{70}\right) = 10.3 \pm 2.093 \left(\frac{4.8}{120}\right) = 10.3 \pm 2.2464 \\
(8.0536, 12.5464)
\end{array}$$

15. Interpret the interval you found above.

Weight loss from juice fashing for a week is between 8.0536 and 12.5464 pounds.

| <ul> <li>16. A 95% confidence interval is computed to estimate the population proportion of adults in the U.S. who have had their identity stolen. Which of the following values will definitely be within the limits of this confidence interval?</li> <li>A The sample proportion. The middle!</li> <li>B. The population proportion.</li> <li>C. The standard error.</li> <li>D. The critical value.</li> </ul>                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>17. If you increase the sample size, what will happen to the sampling distribution of a sample mean?</li> <li>A. The mean and standard deviation would increase.</li> <li>B. The mean would stay the same and the standard deviation would increase.</li> <li>C. The mean and standard deviation would decrease.</li> <li>D. The mean would stay the same and the standard deviation would decrease.</li> <li>E. The mean and standard deviation will stay the same.</li> </ul> |
| True or False (2 points each)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18. In a hypothesis test, the alternative hypothesis is what we are trying to prove.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19. If we get statistically significant results, it is possible that we may have committed a Type II error.                                                                                                                                                                                                                                                                                                                                                                              |
| 20. The Central Limit Theorem states that for any non-normal distribution, the sample means from that distribution will be approximately normally distributed, if the sample size is large enough.                                                                                                                                                                                                                                                                                       |
| <ul> <li>21. (4 points) ** The p-value for a hypothesis test can be broadly defined as the probability of</li> <li>A. The null hypothesis being true.</li> <li>B. The alternative hypothesis being false.</li> <li>C. Observing a sample as or more extreme than what was observed given that the null hypothesis is true.</li> <li>D. Making a Type I error.</li> </ul>                                                                                                                 |
| 22. (4 points) ** Suppose you are doing testing the following hypothesis to see if two groups had the same standard deviation or not. $H_0: \sigma_1 = \sigma_2$                                                                                                                                                                                                                                                                                                                         |
| $H_0: \sigma_1 = \sigma_2$ $H_A: \sigma_1 \neq \sigma_2$ The test reveals a p-value of 0.4523. What conclusion can you draw?  > huge: +Trn                                                                                                                                                                                                                                                                                                                                               |
| There is not enough evidence to conclude                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the two answers don't have the same                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| There is not enough evidence to conclude<br>the two groups don't have the same<br>standard deviation.                                                                                                                                                                                                                                                                                                                                                                                    |
| 2 INMINION A 212 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### **Statistics 119 Formulas for the Semester**

#### **Probability Formulas:**

$$\overline{P(A \text{ or } B) = P(A \cup B)} = P(A) + P(B) - P(A \cap B)$$

$$P(A \ and \ B) = P(A \cap B) = P(A \mid B) \bullet P(B)$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

#### Mean and standard deviation of a discrete random variable

$$E(X) = \mu = \sum x p(x)$$

$$\sigma = \sqrt{\sum (x - \mu)^2 p(x)} = \sqrt{\sum x^2 p(x) - \mu^2}$$

### **Binomial Probability Function:**

$$P(X=k) = {}_{n}C_{k} p^{k} q^{n-k}$$

$$Mean = \mu_x = np$$

S tan dard Deviation = 
$$\sigma_x = \sqrt{npq}$$

$$z^* = \frac{x - np}{\sqrt{npq}} = \frac{x - \mu_X}{\sigma_X}$$

## **Sampling Distribution of a Sample Proportion:**

$$Mean = \mu_{\hat{p}} = p$$

Standard Deviation = 
$$\sigma \hat{p} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{pq}{n}}$$

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} = Z = \frac{\hat{p} - \mu \hat{p}}{\sigma \hat{p}}$$

# **Normal Distribution:**

Direct calculation: 
$$z = \frac{x - \mu}{\sigma}$$

Direct calculation: 
$$z = \frac{x - \mu}{\sigma}$$
 Inverse calculation:  $x = z(\sigma) + \mu$ 

# #17

Mean and standard deviation of sample mean: 
$$\mu_{\overline{x}} = \mu$$
  $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ 

Direct calculation: 
$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

Direct calculation: 
$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 Inverse calculation:  $\overline{x} = z \left(\frac{\sigma}{\sqrt{n}}\right) + \mu$ 

#### **Hypothesis Test**

# **Confidence Interval**

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$$

$$\hat{p} \pm Z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Sample Size
$$n = \frac{(Z^*)^2 \hat{p} \hat{q}}{(ME)^2}$$

For means ( 
$$\sigma$$
 known)

$$Z = \frac{\bar{x} - \mu}{\left(\sigma / \right)}$$

$$\bar{x} \pm Z^* \left( \frac{\sigma}{\sqrt{n}} \right)$$

$$n = \left(\frac{Z^* \sigma}{ME}\right)$$

For means ( 
$$\sigma$$
 unknown)

Ħa

$$t = \frac{\overline{x} - \mu}{\left(\frac{S}{\sqrt{n}}\right)}$$

$$\bar{x} \pm t^* \left( \frac{S}{\sqrt{n}} \right)$$

$$n = \left(\frac{(t^*)(s)}{ME}\right)^2$$

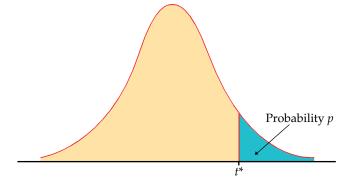



Table entry for p and C is the critical value  $t^*$  with probability p lying to its right and probability C lying between  $-t^*$  and  $t^*$ .

|                                                                                                        | LE D<br>ribution                                                                                                                                                                                      | n critica                                                                                                                                                   | l values                                                                                                                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        | Upper-tail probability $p$                                                                                                                                                                            |                                                                                                                                                             |                                                                                                                                                                                                                               |                                                                                                                                                                                                             |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |
| df                                                                                                     | .25                                                                                                                                                                                                   | .20                                                                                                                                                         | .15                                                                                                                                                                                                                           | .10                                                                                                                                                                                                         | .05                                                                                                                                                                                             | .025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .02                                                                                                                                                                                                                     | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .005                                                                                                                                                                                                                                                                                                                    | .0025                                                                                                                                                                                                             | .001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0005                                                                                                                                                                                                                   |
| 1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 40 50 60 80 100 1000 | 1.000 0.816 0.765 0.741 0.727 0.718 0.711 0.706 0.703 0.700 0.697 0.695 0.694 0.692 0.691 0.690 0.688 0.688 0.688 0.688 0.688 0.685 0.685 0.685 0.684 0.684 0.683 0.683 0.683 0.683 0.681 0.679 0.679 | 1.376 1.061 0.978 0.941 0.920 0.906 0.896 0.889 0.883 0.879 0.876 0.868 0.866 0.865 0.863 0.866 0.859 0.858 0.858 0.857 0.856 0.855 0.854 0.851 0.849 0.848 | 1.963 1.386 1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083 1.079 1.076 1.074 1.071 1.069 1.067 1.064 1.063 1.061 1.060 1.059 1.058 1.058 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.047 1.045 1.043 1.042 1.037 | 3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341 1.337 1.333 1.330 1.328 1.321 1.319 1.318 1.316 1.315 1.314 1.313 1.311 1.310 1.303 1.299 1.296 1.292 1.290 1.282 | 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.761 1.753 1.746 1.740 1.734 1.729 1.725 1.721 1.711 1.708 1.706 1.703 1.701 1.699 1.697 1.684 1.676 1.671 1.664 1.660 1.616 | 2.131<br>2.120<br>2.110<br>2.191<br>2.093<br>2.086<br>2.080<br>2.074<br>2.069<br>2.064<br>2.056<br>2.056<br>2.055<br>2.048<br>2.045<br>2.045<br>2.045<br>2.049<br>2.049<br>2.049<br>2.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049<br>4.049 | 15.89 4.849 3.482 2.999 2.757 2.612 2.517 2.449 2.398 2.359 2.328 2.303 2.282 2.264 2.249 2.235 2.224 2.214 2.205 2.197 2.189 2.183 2.177 2.172 2.167 2.162 2.158 2.154 2.150 2.147 2.123 2.109 2.099 2.088 2.081 2.056 | 31.82<br>6.965<br>4.541<br>3.747<br>3.365<br>3.143<br>2.998<br>2.896<br>2.821<br>2.764<br>2.718<br>2.681<br>2.650<br>2.624<br>2.602<br>2.583<br>2.567<br>2.552<br>2.539<br>2.528<br>2.518<br>2.508<br>2.500<br>2.492<br>2.473<br>2.473<br>2.467<br>2.462<br>2.457<br>2.423<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.390<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300<br>2.300 | 63.66<br>9.925<br>5.841<br>4.604<br>4.032<br>3.707<br>3.499<br>3.355<br>3.250<br>3.106<br>3.055<br>3.012<br>2.977<br>2.947<br>2.921<br>2.898<br>2.878<br>2.861<br>2.845<br>2.831<br>2.819<br>2.807<br>2.797<br>2.797<br>2.771<br>2.763<br>2.756<br>2.750<br>2.704<br>2.678<br>2.639<br>2.626<br>2.639<br>2.626<br>2.581 | 127.3 14.09 7.453 5.598 4.773 4.317 4.029 3.833 3.690 3.581 3.497 3.428 3.372 3.326 3.286 3.252 3.222 3.197 3.174 3.153 3.135 3.119 3.104 3.091 3.078 3.067 3.047 3.038 3.030 2.971 2.937 2.915 2.887 2.871 2.813 | 318.3<br>22.33<br>10.21<br>7.173<br>5.893<br>5.208<br>4.785<br>4.501<br>4.297<br>4.144<br>4.025<br>3.930<br>3.852<br>3.787<br>3.733<br>3.686<br>3.646<br>3.611<br>3.579<br>3.552<br>3.527<br>3.505<br>3.485<br>3.467<br>3.435<br>3.421<br>3.408<br>3.396<br>3.385<br>3.396<br>3.385<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396<br>3.396 | 636.6 31.60 12.92 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965 3.965 3.883 3.850 3.819 3.792 3.768 3.745 3.725 3.707 3.690 3.674 3.659 3.646 3.551 3.496 3.496 3.416 3.390 3.300 |
| <i>z</i> *                                                                                             | 0.674<br>50%                                                                                                                                                                                          | 60%                                                                                                                                                         | 1.036                                                                                                                                                                                                                         | 1.282<br>80%                                                                                                                                                                                                | 90%                                                                                                                                                                                             | 1.950<br>95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.054                                                                                                                                                                                                                   | 2.326<br>98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.576<br>99%                                                                                                                                                                                                                                                                                                            | 2.807<br>99.5%                                                                                                                                                                                                    | 3.091<br>99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.291<br>99.9%                                                                                                                                                                                                          |
|                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                               |                                                                                                                                                                                                             | #11                                                                                                                                                                                             | Confide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nce level C                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |

#10

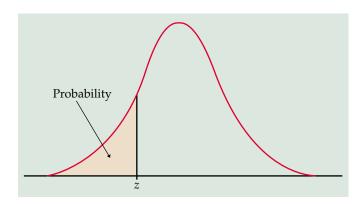



Table entry for z is the area under the standard normal curve to the left of z.

| TABI | LE A           | Standar | d norma | al proba | abilities      |                |       |                |       |                |
|------|----------------|---------|---------|----------|----------------|----------------|-------|----------------|-------|----------------|
| z    | .00            | .01     | .02     | .03      | .04            | .05            | .06   | .07            | .08   | .09            |
| -3.4 | .0003          | .0003   | .0003   | .0003    | .0003          | .0003          | .0003 | .0003          | .0003 | .0002          |
| -3.3 | .0005          | .0005   | .0005   | .0004    | .0004          | .0004          | .0004 | .0004          | .0004 | .0003          |
| -3.2 | .0007          | .0007   | .0006   | .0006    | .0006          | .0006          | .0006 | .0005          | .0005 | .0005          |
| -3.1 | .0010          | .0009   | .0009   | .0009    | .0008          | .0008          | .0008 | .0008          | .0007 | .0007          |
| -3.0 | .0013          | .0013   | .0013   | .0012    | .0012          | .0011          | .0011 | .0011          | .0010 | .0010          |
| -2.9 | .0019          | .0018   | .0018   | .0017    | .0016          | .0016          | .0015 | .0015          | .0014 | .0014          |
| -2.8 | .0026          | .0025   | .0024   | .0023    | .0023          | .0022          | .0021 | .0021          | .0020 | .0019          |
| -2.7 | .0035          | .0034   | .0033   | .0032    | .0031          | .0030          | .0029 | .0028          | .0027 | .0026          |
| -2.6 | .0047          | .0045   | .0044   | .0043    | .0041          | .0040          | .0039 | .0038          | .0037 | .0036          |
| -2.5 | .0062          | .0060   | .00.59  | .0057    | .0055          | .0054          | .0052 | .0051          | .0049 | .0048          |
| -2.4 | .0082          | .0080   | .0078   | .0075    | .0073          | .0071          | .0069 | .0068          | .0066 | .0064          |
| -2.3 | .0107          | .0104   | .0102   | .0099    | .0096          | .0094          | .0091 | .0089          | .0087 | .0084          |
| -22  | .0139          | .0136   | 0132    | .0129    | .0125          | .0122          | .0119 | .0116          | .0113 | .0110          |
| -2.1 | 0179           | 0174    | .0170   | .0166    | .0162          | .0158          | .0154 | .0150          | .0146 | .0143          |
| 2.0  | .0228          | .0222   | .0217   | .0212    | .0207          | .0202          | .0197 | .0192          | .0188 | .0183          |
| -1.9 | .0287          | .0281   | .0274   | .0268    | .0262          | .0256          | .0250 | .0244          | .0239 | .0233          |
| -1.8 | .0359          | .0351   | .0344   | .0336    | .0329          | .0322          | .0314 | .0307          | .0301 | .0294          |
| -1.7 | .0446          | .0436   | .0427   | .0418    | .0409          | .0401          | .0392 | .0384          | .0375 | .0367          |
| -1.6 | .0548          | .0537   | .0526   | .0516    | .0505          | .0495          | .0485 | .0475          | .0465 | .0455          |
| -1.5 | .0668          | .0655   | .0643   | .0630    | .0618          | .0606          | .0594 | .0582          | .0571 | .0559          |
| -1.4 | .0808          | .0793   | .0778   | .0764    | .0749          | .0735          | .0721 | .0708          | .0694 | .0681          |
| -1.3 | .0968          | .0951   | .0934   | .0918    | .0901          | .0885          | .0869 | .0853          | .0838 | .0823          |
| -1.2 | .1151          | .1131   | .1112   | .1093    | .1075          | .1056          | .1038 | .1020          | .1003 | .0985          |
| -1.1 | .1357          | .1335   | .1314   | .1292    | .1271          | .1251          | .1230 | .1210          | .1190 | .1170          |
| -1.0 | .1587          | .1562   | .1539   | .1515    | .1492          | .1469          | .1446 | .1423          | .1401 | .1379          |
| -0.9 | .1841          | .1814   | .1788   | .1762    | .1736          | .1711          | .1685 | .1660          | .1635 | .1611          |
| -0.8 | .2119          | .2090   | .2061   | .2033    | .2005          | .1977          | .1949 | .1922          | .1894 | .1867          |
| -0.7 | .2420          | .2389   | .2358   | .2327    | .2296          | .2266          | .2236 | .2206          | .2177 | .2148          |
| -0.6 | .2743          | .2709   | .2676   | .2643    | .2611          | .2578          | .2546 | .2514          | .2483 | .2451          |
| -0.5 | .3085          | .3050   | .3015   | .2981    | .2946          | .2912          | .2877 | .2843          | .2810 | .2776          |
| -0.4 | .3446          | .3409   | .3372   | .3336    | .3300          | .3264          | .3228 | .3192          | .3156 | .3121          |
| -0.3 | .3821<br>.4207 | .3783   | .3745   | .3707    | .3669          | .3632          | .3594 | .3557          | .3520 | .3483          |
| -0.2 | .4602          | .4168   | .4129   | .4090    | .4052<br>.4443 | .4013<br>.4404 | .3974 | .3936<br>.4325 | .3897 | .3859<br>.4247 |
| -0.1 |                | .4562   | .4522   | .4483    |                |                | .4364 |                | .4286 |                |
| -0.0 | .5000          | .4960   | .4920   | .4880    | .4840          | .4801          | .4761 | .4721          | .4681 | .4641          |



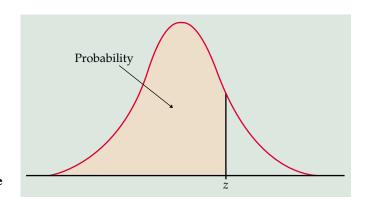



Table entry for z is the area under the standard normal curve to the left of z.

| TABLE A Standard normal probabilities (continued) |       |       |       |       |       |       |       |       |       |       |
|---------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| z                                                 | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
| 0.0                                               | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1                                               | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2                                               | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3                                               | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4                                               | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5                                               | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6                                               | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7                                               | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8                                               | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9                                               | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0                                               | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1                                               | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2                                               | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3                                               | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4                                               | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5                                               | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6                                               | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7                                               | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8                                               | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9                                               | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0                                               | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1                                               | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2                                               | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3                                               | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4                                               | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5                                               | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6                                               | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7                                               | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8                                               | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9                                               | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0                                               | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1                                               | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2                                               | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 |
| 3.3                                               | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4                                               | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 |