EXTRA CREDIT

Math 160

Name \qquad

Use DataLink 26760 form (100 answers on front and back) to record your answers. Record your answers on the BLUE side only. Extra Credit is due the day of the Final Exam.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Provide an appropriate response.

1) For the stem-and-leaf plot below, what are the maximum and minimum entries?
2) \qquad

$$
\begin{aligned}
& 1 \mid 08 \\
& 1 \mid 666789 \\
& 2 \mid 0112344566 \\
& 2 \mid 77788999 \\
& 3 \mid 011234455 \\
& 3 \mid 66678899 \\
& 4 \mid 17
\end{aligned}
$$

A) max: 47 ; min: 10
B) $\max : 38$; $\min : 7$
C) max: 41; min: 10
D) max: 47; min: 18

Construct a frequency distribution for the data using five classes. Describe the shape of the distribution.
2) The data set: ages of dishwashers (in years) in 20 randomly selected households
2) \qquad

$$
\begin{array}{rrrrrrrrrr}
12 & 6 & 4 & 9 & 11 & 1 & 7 & 8 & 9 & 8 \\
9 & 13 & 5 & 15 & 7 & 6 & 8 & 8 & 2 & 1
\end{array}
$$

A) skewed to the left
B) skewed to the right
C) bell shaped
D) uniform

Solve the problem.
3) Which of the following assignments of probabilities to the sample points A, B, and C is valid if A,
3) \qquad
B, and C are the only sample points in the experiment?
A) $P(A)=0, P(B)=\frac{1}{12}, P(C)=\frac{11}{12}$
B) $P(A)=\frac{1}{5}, P(B)=\frac{1}{10}, P(C)=\frac{1}{2}$
C) $P(A)=\frac{1}{7}, P(B)=\frac{1}{7}, P(C)=\frac{1}{7}$
D) $P(A)=-\frac{1}{4}, P(B)=\frac{1}{2}, P(C)=\frac{3}{4}$

Provide an appropriate response.

4) Each year advertisers spend billions of dollars purchasing commercial time on network sports television. In the first 6 months of 1988, advertisers spent $\$ 1.1$ billion. A recent article listed the top 10 leading spenders (in millions of dollars):

Company A	$\$ 73.1$	Company F	$\$ 25.2$
Company B	62.2	Company G	24.3
Company C	57.5	Company H	21.4
Company D	55.5	Company I	23.4
Company E	30.6	Company J	20.3

Calculate the mean amount spent.
A) 410.47 million dollars
B) 20.26 million dollars
C) 39.35 million dollars
D) 52.80 million dollars
5) Suppose a basketball player is an excellent free throw shooter and makes 90% of his free throws (i.e., he has a 90% chance of making a single free throw). Assume that free throw shots are independent of one another. Suppose this player gets to shoot three free throws. Find the probability that he misses all three consecutive free throws.
A) 0.999
B) 0.271
C) 0.001
D) 0.729
6) Which of the following cannot be the probability of an event?
A) 0
B) 0.001
C) -32
D) $\frac{\sqrt{5}}{3}$
7) A human gene carries a certain disease from the mother to the child with a probability rate of 42%. That is, there is a 42% chance that the child becomes infected with the disease. Suppose a female carrier of the gene has three children. Assume that the infections of the three children are independent of one another. Find the probability that at least one of the children get the disease from their mother.
A) 0.195
B) 0.805
C) 0.424
D) 0.141
8) The table lists the drinking habits of a group of college students. If a student is chosen at
8)
7)
6)
5) \qquad
\qquad
\qquad random, find the probability of getting someone who is a man or a non-drinker. Round your answer to three decimal places.

Sex	Non-drinker	Regular Drinker	Heavy Drinker	Total
Man	135	45	5	185
Woman	187	21	13	221
Total	322	66	18	406

A) 0.942
B) 0.837
C) 0.947
D) 0.916
9) Each year advertisers spend billions of dollars purchasing commercial time on network sports television. In the first 6 months of 1988, advertisers spent $\$ 1.1$ billion. A recent article listed the top 10 leading spenders (in millions of dollars):

Company A	$\$ 70.9$	Company F	$\$ 26.3$
Company B	60.9	Company G	24
Company C	56.8	Company H	21.9
Company D	54.9	Company I	22.1
Company E	29	Company J	20.3

Calculate the median.
A) 50.60 million dollars
B) 38.71 million dollars
C) 5.26 million dollars
D) 27.65 million dollars
10) A small computing center has found that the number of jobs submitted per day to its computers has a distribution that is approximately bell shaped, with a mean of 74 jobs and a standard deviation of 5 . Where do we expect most (approximately 95%) of the distribution to fall?
A) between 64 and 89 jobs per day
B) between 69 and 79 jobs per day
C) between 59 and 89 jobs per day
D) between 64 and 84 jobs per day
11) The February utility bills (in dollars) for ten residents of a large city are listed below. Find the mode amount.
$\begin{array}{llllllllll}71 & 67 & 67 & 72 & 76 & 72 & 73 & 68 & 72 & 72\end{array}$
A) $\$ 76$
B) $\$ 72$
C) $\$ 67$
D) $\$ 73$
12) A machine has four components, A, B, C, and D, set up in such a manner that all four parts must work for the machine to work properly. Assume the probability of one part working does not depend on the functionality of any of the other parts. Also assume that the probabilities of the individual parts working are $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=0.99, \mathrm{P}(\mathrm{C})=0.92$, and $\mathrm{P}(\mathrm{D})=0.9$. Find the probability that the machine works properly.
A) 0.8115
B) 0.8197
C) 0.1885
D) 0.9017
13) The chart shows the probability of a certain disease for men by age. What is the probability that a randomly selected man between the ages of 55 and 64 does not have this disease?

Age	Probability of Disease X
$20-24$	less than 0.008
$25-34$	0.009
$35-44$	0.14
$45-54$	0.39
$55-64$	0.42
$65-74$	0.67
$75+$	0.79

A) 0.61
B) 0.42
C) 0.39
D) 0.58
14) The costs (in dollars) of 10 college math textbooks are listed below. Find the sample standard
12)
13) \qquad
15) On a recent day during the flu season, the Midtown Medical Clinic saw many patients. Patients \qquad had their temperatures (in ${ }^{\circ} \mathrm{F}$) taken. The distribution of temperatures is given below. Determine the mean temperature of a sample of 100 patients.

Temperatures	Frequency
$95.6-96.49$	1
$96.5-97.39$	3
$97.4-98.29$	19
$98.3-99.19$	28
$99.2-100.09$	35
$100.1-100.99$	12
$101.0-101.89$	2

A) $98.75^{\circ} \mathrm{F}$
B) $99.08^{\circ} \mathrm{F}$
C) $98.63^{\circ} \mathrm{F}$
D) $99.52^{\circ} \mathrm{F}$

Assume that you plan to use a significance level of $\alpha=0.05$ to test the claim that $p_{1}=p_{2}$. Use the given sample sizes and numbers of successes to find the z test statistic for the hypothesis test.
16) A random sampling of sixty pitchers from the National League and fifty-two pitchers from the American League showed that 19 National and 11 American League pitchers had E.R.A's below 3.5.
A) $\mathrm{z}=1.629$
B) $\mathrm{z}=1.253$
C) $z=191.183$
D) $\mathrm{z}=15.457$

Provide an appropriate response. Express your answer as a simplified fraction unless otherwise noted.
17) The managers of a corporation were surveyed to determine the background that leads to a
17) successful manager. Each manager was rated as being either a good, fair, or poor manager by his/her boss. The manager's educational background was also noted. The data appear below. Given that a manager is a good manager, what is the probability that this manager has some college background?

Educational Background

Manager Rating	H. S. Degree	Some College	College Degree	Master's or Ph.D.	Totals
Good	5	7	26	1	39
Fair	1	15	41	30	87
Poor	2	3	9	20	34
Totals	8	25	76	51	160

A) $\frac{2}{3}$
B) $\frac{7}{39}$
C) $\frac{7}{160}$
D) $\frac{7}{25}$

Provide an appropriate response.
18) Construct a 95% confidence interval for the population mean, μ. Assume the population has a normal distribution. A sample of 20 part-time workers had mean annual earnings of $\$ 3120$ with a standard deviation of $\$ 677$.
A) $(\$ 2135, \$ 2567)$
B) $(\$ 2657, \$ 2891)$
C) $(\$ 2803, \$ 3437)$
D) $(\$ 1324, \$ 1567)$
19) You wish to test the claim that $\mu \neq 36$ at a level of significance of $\alpha=0.05$ and are given sample
\qquad statistics $n=35, \bar{x}=35.1$, and $\sigma=2.7$. Compute the value of the test statistic. Round your answer to two decimal places.
A) -1.83
B) -2.86
C) -1.97
D) -3.12
20) The produce manager at a farmer's market was interested in determining how many oranges a person buys when they buy oranges. He asked the cashiers over a weekend to count how many oranges a person bought when they bought oranges and record this number for analysis at a later time. The data is given below in the table. The random variable x represents the number of oranges purchased and $P(x)$ represents the probability that a customer will buy x apples. Determine the mean number of oranges purchased by a customer.

x	1	2	3	4	5	6	7	8	9	10
$P(x)$	0.05	0.19	0.20	0.25	0.12	0.10	0	0.08	0	0.01

A) 3
B) 4
C) 5.50
D) 3.97
21) The owner of a farmer's market was interested in determining how many oranges a person buys when they buy oranges. He asked the cashiers over a weekend to count how many oranges a person bought when they bought oranges and record this number for analysis at a later time. The data is given below in the table. The random variable x represents the number of oranges purchased and $P(x)$ represents the probability that a customer will buy x oranges. Determine the variance of the number of oranges purchased by a customer.

x	1	2	3	4	5	6	7	8	9	10
$P(x)$	0.05	0.19	0.20	0.25	0.12	0.10	0	0.08	0	0.01

A) 1.95
B) 3.57
C) 0.56
D) 3.97
22) A local eat-in pizza restaurant wants to investigate the possibility of starting to deliver pizzas. The owner of the store has determined that home delivery will be successful if the average time spent on the deliveries does not exceed 35 minutes. The owner has randomly selected 20 customers and has delivered pizzas to their homes in order to test if the mean delivery time actually exceeds 35 minutes. Suppose the P-value for the test was found to be 0.0295 . State the correct conclusion.
A) At $\alpha=0.03$, we fail to reject H_{0}.
B) At $\alpha=0.05$, we fail to reject H_{0}.
C) At $\alpha=0.025$, we fail to reject H_{0}.
D) At $\alpha=0.02$, we reject H_{0}.
23) In a recent survey, 66% of the community favored building a health center in their neighborhood. If 14 citizens are chosen, find the probability that exactly 9 of them favor the building of the health center.
A) 0.643
B) 0.015
C) 0.216
D) 0.660
24) Many people think that a national lobby's successful fight against gun control legislation is reflecting the will of a minority of Americans. A random sample of 4000 citizens yielded 2250 who are in favor of gun control legislation. Estimate the true proportion of all Americans who are in favor of gun control legislation using a 90% confidence interval.
A) 0.5625 ± 0.4048
B) 0.4375 ± 0.0129
C) 0.5625 ± 0.0129
D) 0.4375 ± 0.4048
25) A senator wishes to estimate the proportion of United States voters who favor abolishing the
22) \qquad
23) \qquad
24) \qquad
25) \qquad Electoral College. How large a sample is needed in order to be 95% confident that the sample proportion will not differ from the true proportion by more than 2% ?
A) 4802
B) 25
C) 2401
D) 1692
26) Find the standardized test statistic t for a sample with $\mathrm{n}=25, \overline{\mathrm{x}}=32, \mathrm{~s}=3$, and $\alpha=0.005$ if $\mathrm{H}_{1}: \mu>31$. Round your answer to three decimal places.
A) 1.239
B) 1.997
C) 1.452
D) 1.667
27) Assume that blood pressure readings are normally distributed with a mean of 123 and a
27) standard deviation of 9.6 . If 144 people are randomly selected, find the probability that their mean blood pressure will be less than 125 .
A) 0.9998
B) 0.9938
C) 0.0062
D) 0.8615
28) Suppose a brewery has a filling machine that fills 12 ounce bottles of beer. It is known that the amount of beer poured by this filling machine follows a normal distribution with a mean of 12.48 ounces and a standard deviation of 0.04 ounce. Find the probability that the bottle contains between 12.38 and 12.44 ounces.
A) 0.1525
B) 0.8475
C) 0.8351
D) 0.1649
29) Many people think that a national lobby's successful fight against gun control legislation is reflecting the will of a minority of Americans. A random sample of 4000 citizens yielded 2250 who are in favor of gun control legislation. Estimate the true proportion of all Americans who are in favor of gun control legislation using a 95% confidence interval.
A) 0.4375 ± 0.0154
B) 0.4375 ± 0.4823
C) 0.5625 ± 0.0154
D) 0.5625 ± 0.4823
30) If $X_{1}, X_{2}, X_{3}, \ldots, X_{N}$ are the N observations of a variable from a population, then the population mean is symbolized by
A) X
B) Σ
C) μ
D) \tilde{X}
31) A physics exam consists of 9 multiple-choice questions and 6 open-ended problems in which all work must be shown. If an examinee must answer 7 of the multiple-choice questions and 3 of the open-ended problems, in how many ways can the questions and problems be chosen?
A) 720
B) $261,273,600$
C) $21,772,800$
D) 1134
32) The length of time it takes college students to find a parking spot in the library parking lot follows a normal distribution with a mean of 4.5 minutes and a standard deviation of 1 minute. Find the cut-off time which 75.8% of the college students exceed when trying to find a parking spot in the library parking lot.
A) 5.2 min
B) 5.3 min
C) 5.0 min
D) 4.8 min
33) If the probability of a newborn kitten being female is 0.5 , find the probability that in 100 births,
\qquad

\qquad
\qquad 55 or more will be female. Use the normal distribution to approximate the binomial distribution.
A) 0.1841
B) 0.0606
C) 0.8159
D) 0.7967

Determine whether the hypothesis test involves a sampling distribution of means that is a normal distribution, Student t distribution, or neither.
34) Claim: $\mu=120$. Sample data: $\mathrm{n}=11, \overline{\mathrm{x}}=100, \mathrm{~s}=15.2$. The sample data appear to come from a normally distributed population with unknown μ and σ.
A) Student t
B) Neither
C) Normal

Find the P -value for the indicated hypothesis test.

35) Find the P -value for a test of the claim that less than 50% of the people following a particular diet will experience increased energy. Of 100 randomly selected subjects who followed the diet, 47 noticed an increase in their energy level.
A) 0.5486
B) 0.7257
C) 0.2743
D) 0.2257

Provide an appropriate response.

36) Find the standardized test statistic to test the hypothesis that $\mu_{1}>\mu_{2}$. Two samples are randomly selected from each population. The sample statistics are given below. Use $\alpha=0.05$.

$\mathrm{n}_{1}=100$	$\mathrm{n}_{2}=125$
$\overline{\mathrm{x}}_{1}=480$	$\overline{\mathrm{x}}_{2}=465$
$\mathrm{~s}_{1}=45$	$\mathrm{~s}_{2}=25$

A) 2.98
B) 0.91
C) 1.86
D) 2.81
37) When performing a hypothesis test upon two dependent samples, the variable of interest is
A) the absolute value of the differences that exist between the matched-pair data.
B) the differences that exist between the matched-pair data.
C) all of the combined data.
D) the data that is the same in both samples.
38) A quiz consists of 10 multiple choice questions, each with five possible answers, one of which is correct. To pass the quiz a student must get 60% or better on the quiz. If a student randomly guesses, what is the probability that the student will pass the quiz?
A) 0.060
B) 0.205
C) 0.377
D) 0.006
39) A committee consisting of 6 people is to be selected from eight parents and four teachers. Find the probability of selecting three parents and three teachers.
A) $\frac{2}{33}$
B) $\frac{100}{231}$
C) $\frac{10}{11}$
D) $\frac{8}{33}$
40) A physical fitness association is including the mile run in its secondary-school fitness test. The time for this event for boys in secondary school is known to possess a normal distribution with a mean of 440 seconds and a standard deviation of 60 seconds. Find the probability that a randomly selected boy in secondary school can run the mile in less than 302 seconds.
A) 0.0107
B) 0.4893
C) 0.5107
D) 0.9893
41) Given $\mathrm{H}_{0}: \mu=25, \mathrm{H}_{1}: \mu \neq 25$, and $\mathrm{P}=0.028$. Do you reject or fail to reject H_{0} at the 0.01 level of
37)
38) \qquad
) \qquad
.
\qquad
41) significance?
A) reject H_{0}
B) fail to reject H_{0}
C) not sufficient information to decide

Find the critical value or values of $\chi^{\mathbf{2}}$ based on the given information.
42) $\mathrm{H}_{1}: \sigma \neq 9.3$
42)
$\mathrm{n}=28$
$\alpha=0.05$
A) $16.151,40.113$
B) $14.573,43.194$
C) $-14.573,14.573$
D) $-40.113,40.113$

Use the histograms shown to answer the question.
43)
43)

Is either histogram symmetric?
A) The first is symmetric, but the second is not symmetric.
B) Neither is symmetric.
C) The second is symmetric, but the first is not symmetric.
D) Both are symmetric.

Provide an appropriate response.
44) The prizes that can be won in a sweepstakes are listed below together with the chances of
44) winning each one: $\$ 3800$ (1 chance in 8600); \$1700 (1 chance in 5400); \$700 (1 chance in 4600); $\$ 200$ (1 chance in 2600). Find the expected value of the amount won for one entry if the cost of entering is 55 cents.
A) $\$ 200$
B) $\$ 0.91$
C) $\$ 0.44$
D) $\$ 0.47$

Use the given data to find the equation of the regression line. Round the final values to three significant digits, if necessary.
45) Managers rate employees according to job performance and attitude. The results for several randomly selected employees are given below.

Performance	59	63	65	69	58	77	76	69	70	64
Attitude	72	67	78	82	75	87	92	83	87	78

A) $\hat{y}=92.3-0.669 x$
B) $\hat{y}=2.81+1.35 x$
C) $\hat{y}=11.7+1.02 x$
D) $\hat{y}=-47.3+2.02 x$

Use the given data to find the best predicted value of the response variable.
46) Based on the data from six students, the regression equation relating number of hours of
45) \qquad
preparation (x) and test score (y) is $\hat{y}=67.3+1.07 x$. The same data yield $r=0.224$ and $\bar{y}=75.2$. What is the best predicted test score for a student who spent 4 hours preparing for the test?
A) 59.7
B) 71.6
C) 75.2
D) 78.1
46) \qquad

Assume that you plan to use a significance level of $\alpha=0.05$ to test the claim that $\mathbf{p}_{1}=\mathbf{p}_{\mathbf{2}}$, Use the given sample sizes and numbers of successes to find the P -value for the hypothesis test.

$$
\text { 47) } \begin{aligned}
\mathrm{n}_{1} & =100 & & \mathrm{n}_{2}=140 \\
\mathrm{x}_{1} & =41 & & \mathrm{x}_{2}=35
\end{aligned}
$$

A) 0.0512
B) 0.0021
C) 0.4211
D) 0.0086

Assume that you want to test the claim that the paired sample data come from a population for which the mean difference is $\mu_{d}=0$. Compute the value of the t test statistic. Round intermediate calculations to four decimal places as needed and final answers to three decimal places as needed.
48) A farmer has decided to use a new additive to grow his crops. He divided his farm into 10 plots and kept records of the corn yield (in bushels) before and after using the additive. The results are shown below.

Plot:	1	2	3	4	5	6	7	8	9	10
Before	9	9	8	7	6	8	5	9	10	11
After	10	9	9	8	7	10	6	10	10	12

You wish to test the following hypothesis at the 1 percent level of significance.

$$
\mathrm{H}_{0}: \mu_{\mathrm{d}}=0 \text { against } \mathrm{H}_{1}: \mu_{\mathrm{d}} \neq 0 .
$$

What is the value of the appropriate test statistic?
A) 5.014
B) 1.584
C) 2.536
D) 2.033

Find the probability (as a decimal rounded to four decimal places).
49) A bag contains 6 cherry, 3 orange, and 2 lemon candies. You reach in and take 3 pieces of candy \qquad at random. What is the probability that you have at least 2 cherry candies?
A) 0.4909
B) 0.3362
C) 0.5758
D) 0.1515

